
The Code Equivalence Problem:
New Algorithms and Reductions

UTSA ALGORITHMS SEMINAR, OCT. 10, 2025

Huck Bennett
University of Colorado Boulder

Based on joint works with Drisana Bhatia, Jean-François Biasse, Medha
Durisheti, Lucas LaBuff, Kaung Myat Htay Win, Vincenzo Pallozzi
Lavorante, and Philip Waitkevich.



This talk is based on two joint works
1. Asymptotic improvements to provable algorithms for the code equivalence problem

with Drisana Bhatia, Jean-François Biasse, Medha Durisheti,
Lucas LaBuff, Vincenzo Pallozzi Lavorante, and Philip Waitkevich
(https://eprint.iacr.org/2025/187).
In ISIT 2025 and accepted to IEEE Transactions on Information Theory.

2. Relating Code Equivalence to Other Isomorphism Problems
with Kaung Myat Htay Win (https://eprint.iacr.org/2024/782).
In Designs, Codes, and Cryptography 2025.



Computational Isomorphism Problems
Problem: Given two {graphs, codes, lattices} as input, decide if they are “essentially the same.”

Image source: Wikipedia.

 =
− 
 
 

↦ ′ =
 
 
 −

Graphs Codes Lattices

Goals of our work:
1. Give faster algorithms for code equivalence.
2. Understand the relationship between code equivalence.
and isomorphism problems on graphs and lattices.



Cryptographic Motivation
Cryptography Based on Code Equivalence:
◦ McEliece Cryptosystem [McEliece, ’78].

◦ “ClassicMcEliece” NIST PQC Standardization Process Submission [Albrecht et al., ’22].

◦ LESS Identification Scheme [Biasse, Micheli, Persichetti, Santini, ’20].

Cryptography Based on Lattice Isomorphism:
◦ LIP-based KEM: (Ducas and van Woerden, ‘22).

◦ Rotations of ℤ PKC: [Bennett, Ganju, Peetathawatchai, and Stephens-Davidowitz, ’23].

◦ HAWK Digital Signature Scheme: [Ducas, Postlethwaite, Pulles, van Woerden, ’22].



Coding Theory 101
Main use of error-correcting codes: Robust communication.

Want to encode a -bit message in a redundant way.

Ex. 4-bit message. Repeat each coordinate 3 times.
◦  ≔ ,,, ↦  ≔ (,,,,,,,,,,,).

◦  is  =  bits long, protects against  arbitrary error.

Ex. Hamming(7,4) code. Compute  = , where  ≔
◦  ≔ ,,, ↦  ≔ (,,,,,,).

◦  is  = 7 bits long, protects against  arbitrary error.

Want a code with  as small as possible and # of errors tolerated as large as possible.

From “A Mathematical
Theory of Communication”

.



Codes
Def. An , ,  code  is a linear subspace of 

 of dimension  with  −  0 ≥  for
distinct , ∈ .
◦ ‖ ⋅ ‖0 denotes Hamming weight, the number of non-zero coordinates of a vector.

◦ ,   denotes an , ,  code for some .

Primal representation: Column basis generator matrix  ∈ 
× ,   ≔  ∶  ∈ 

 .

Fact:  1 = (2) if and only if 2 = 1 for an invertible matrix  (i.e.,  ∈ GL()).



Code Equivalence Problem(s)
1,2 are linearly equivalent if there exists a monomial matrix such that1 = 2.
◦ A monomial matrix is such that =  for full-rank diagonal  and permutation matrix .

Ex.
  
  
 4 

=
  
  
  4

⋅
  
  
  

.

1,2 are permutationally equivalent if there exists a permutation matrix  such that 1 = 2.

 =
 
 
 

,′ =
 
 
 

 =
 
 
 

,′ =
 
 
 

 =
 
 
 

,′ =
 
 
 

Linearly Perm., Not Perm. Equiv.:Permutationally Equiv.: Not Linearly Equiv.:



Search Versions of Code Equivalence
Def. Linear Code Equivalence Problem (LCE) over : Given generator matrices 1,2 of
equivalent ,   codes, find an  × monomial matrix and some  ∈ GL() such that
1 = 2 (if they exist).

Def. Permutation Code Equivalence Problem (PCE) over : Given generator matrices 1,2 of
equivalent ,   codes, find an  ×  permutation matrix  and some  ∈ GL() such that
1 = 2 (if they exist).

Def. Signed Permutation Code Equivalence (SPCE) over : Given generator matrices 1,2 of
[, ] codes, find an  ×  signed permutation matrix  and some  ∈ GL  such that
1 = 2 (if they exist).



Graph Isomorphism Problem
Def. Graphs 1 = ,1 ,2 = (,2) are isomorphic if there exists a permutation  ∶  → 
such that for all ,  ∈ , {, } ∈ 1 ⇔ {(),()} ∈ 2.

Graph Isomorphism Problem (GI): Decide if input graphs 1,2 (represented by adjacency
matrices) are isomorphic.

[Babai ’16]: GI is solvable in poly(log ) time.

Image source: Wikipedia.



Part 1: Algorithms for
Code Equivalence



Related Work
1. Heuristic algorithms using Information Set Decoding (ISD):

a. [Leon ’82], [Beullens ’20], [Barenghi, Biasse, Persichetti and Santini ’23].

2. Algorithms for Codes with small hulls (the hull of  is  ∩ ⊥):
a. Supporting splitting algorithm [Sendrier ’00].

b. Reduction from [Bardet, Otmani and Saeed-Taha ’09].

3. Reduction from LCE on ,   codes to PCE on  −  ,   codes [Sendrier-Simos ’13].

4. Provable general algorithms (our focus):
a. Deterministic PCE algorithm running in () time [Babai ‘11].

b. Randomized LCE algorithm running in /2() time on random codes over fields of order  ≥ 7
[Nowakowski ’25].

Question:What about worst-case
codes and when  < 7?



Our Results
Theorem: The following algorithms exist for code equivalence over arbitrary ,   codes for
arbitrary prime powers :
1. A ()-time deterministic algorithm for LCE.

2. A /2()-time randomized algorithm for PCE and LCE.

3. A /3()-time quantum algorithm for PCE and LCE.

Algorithm (1) complements the algorithm of [Babai ’11] for PCE.

Algorithms (2) and (3) resolve the question on the previous slide and remove both restrictions
from algorithms with similar running times in [Nowakowski ’25].

High-level idea for (2) and (3): Reduce code
equivalence to collision/claw finding.



Babai’s PCE Algorithm
Let  be an ,   code and let  ∈ 

× be a generator matrix of .

Def. An information set  is a set  = {1, … , } ⊆  of coordinates such that the  ×  matrix
obtained by restricting  to rows indexed by  is full-rank.

Def. If  =

′

for ′ ∈ 
 ×

then it is said to be in systematic form.

◦ If  ≔ {, … , } is an information set, then it is easy to put  = ′

′′
into systematic form by setting

 ≔ ′

′′
⋅ ′ 1 =


′′ ⋅ ′ 1 .

Def. Information sets 1, 2 of equivalent codes 1,2 respectively are calledmatching if there exists a
permutation : [] → [] such that  1 = 2 and  1 = 2.
◦ Observation: A permutation such that  1 = 2 must map information sets to information sets.

Main idea of algorithm: To solve PCE, it suffices to know a pair of matching information sets and to
make one call to a graph isomorphism (GI) oracle.



Babai’s PCE Algorithm
Let 1, G2 be generator matrices of equivalent codes 1,2 with matching information sets 1, 2.

Assume WLOG that 1 = 2 = {, … ,}. If not, permute coordinates of 1,2 so that this holds.

Put 1,2 into systematic form so that 1 =

1
′ ,2 =


2
′ .

Then by the assumption that 1, 2 are matching, there must exist 1 ∈  ,2 ∈  ,
 ∈ GL() such that

1
1 
 2


1
′  =


2
′ .

This implies that  = 1 and therefore 21
′1 = 2

′ .



Babai’s PCE Algorithm
To recover a permutation from 1 to 2, it suffices to find permutation matrices 1,2 such that
21

′1 = 2
′ .

Observation [Babai 2011]: This is equivalent to graph isomorphism on ( − , )-bipartite graphs
with -labeled edges!
◦ Regard 1

′ , 2
′ as adjacency matrices of such graphs.

Theorem [Babai 2016]: There is a quasipolynomial-time algorithm for GI.

Babai’s PCE algorithm:
◦ Compute an arbitrary information set 1 of 1.

◦ Enumerate all



≤  size- subsets of indices 2 corresponding to candidate information sets of 2
matching 1.

◦ Solve the resulting GI instance in () time.

Takes () time.



Our Randomized /2-time Algorithm for
PCE
Theorem [Babai 2019]: There is a quasipolynomial-time computable canonical form for graphs.
◦ A canonical form :

× → 
× for -edge labeled bipartite graphs is a function such that:

(1)   = ,
(2)  1 = (2) if and only if 1 and 2 are adjacency matrices of isomorphic graphs.

Let  for  = ,  be a function mapping information sets of  to  
′ , where  =



′ .

◦ Interpret 
′ as the adjacency matrix of a bipartite graph.

◦ Note that 1,2 have the same range.

Key idea:We have reduced PCE to finding a pair (1, 2) of information sets of 1,2 such that
1 1 = 2(2).
◦ Such a pair (1, 2) is called a claw.

Each code  has the same number ≤



≤  of information sets.



Our Randomized /2-time Algorithm for
PCE
Sample independent, uniformly random information sets from each of 1,2.
◦ I.e., sample information sets 1, … ,  of 1 and 1

′ , … , 
′ of 2.

◦ The expected number of matching information sets/claws ( , 
′) is at least2/.

So, setting ≈ 1/2, we get that the expected number of claws is at least 1.
◦ Runs in roughly1/2 ≤ /2 time.

Issue #1: Showing that this works with high probability.

Solution: Bound variance of expected number of claws, apply Chebyshev’s inequality to show that it
concentrates around expectation.

Issue #2: How do we sample uniformly random information sets?

Solution:We don’t. Instead, we use an algorithm for matroid basis sampling [Anari, Liu, Oveis
Gharan, Vinzant ’19] that efficiently samples nearly uniformly random bases efficiently.

Extension:We also extend this to a /3-time quantum algorithm for PCE.



Thank you!


